§3. Symmetries
§3.1 Global symmetries
Consider any infinitesimal transformation of the fields

$$
\phi_{\lambda}^{l}(x) \longmapsto \phi^{l}(x)+i_{\lambda} F^{l}(x)
$$

generalized field, canst.
can be scalar φ,
fermion $\psi^{\alpha}{ }^{\wedge}$ spine
photon A_{μ} index
depends on fields and their derivatives at x
that leaves the action invariant:

$$
0=\delta S=i \Sigma \int d^{4} x \frac{\delta S[\phi]}{\delta \phi^{l}(x)} F^{l}(x)
$$

"global symmetries
If we, on the other hand, consider tres.
with ε position dependent,

$$
\begin{equation*}
\phi^{l}(x) \longmapsto \phi^{l}(x)+i \Sigma(x) F^{l}(x) \tag{1}
\end{equation*}
$$

then $\quad \delta S=\int d^{4} x J^{m}(x) \frac{\partial \Sigma(x)}{\partial x^{m}}$
\rightarrow vanishes when ε is const.!

If we take the fields to statisfy the field equations, i.e. S is stationary, then

$$
\begin{aligned}
& \delta S=\int d^{4} x \gamma^{\mu}(x) \frac{\partial \varepsilon(x)}{\partial x^{m}}=0 \quad \forall \Sigma(x) \ll 1 \\
& \rightarrow 0=\frac{\partial \gamma^{\mu}(x)}{\partial x^{m}}
\end{aligned}
$$

giving $\quad \frac{d Q}{d t}=0, \quad Q:=\int d^{3} x 7^{\circ} \quad$ (2)
\rightarrow Symmetries imply conservation laws!
"Norther's theorem"
Many symmetries leave $L:=\int d^{3} \times \mathcal{L}(\bar{x}, t)$ itself invariant: translations, rotations, iso spin, etc.

$$
\begin{aligned}
\rightarrow \delta S & =i \int d t \int d^{3} x\left[\frac{\delta L[\phi(t), \dot{\phi}(t)]}{\delta \phi^{l}(\vec{x}, t)} \Sigma(t) F^{l}(\vec{x}, t)\right. \\
& \left.+\frac{\delta L[\phi(t), \dot{\phi}(t)]}{\delta \dot{\phi}^{l}\left(\vec{x}_{1}, t\right)} \frac{d}{d t}\left(\varepsilon(t) F^{l}(\vec{x}, t)\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
\overrightarrow{0}=\int d^{3} x\left[\frac{\delta L[\phi(t), \dot{\phi}(t)]}{\delta \phi^{l}(\vec{x}, t)} F^{l}(\vec{x}, t)+\frac{\delta L[\phi(f), \dot{\phi}(t)]}{\delta \dot{\phi}^{l}(\vec{x}, t)} \frac{d}{d t} F^{l}(\vec{x}, t)\right] \tag{3}
\end{equation*}
$$

and thus

$$
\delta S=i \int d t \int d^{3} x \frac{\delta L[\phi(f), \dot{\phi}(f)]}{\delta \dot{\phi}^{e}(\vec{x}, t)} \dot{\varepsilon}(f) F^{e}(\vec{x}, t)
$$

from which we can read off (see eq. (1)) :

$$
\begin{aligned}
J^{0} & =i \frac{\delta L}{\delta \dot{\phi}^{l}} F^{l} \\
\longrightarrow \quad Q & =i \int d^{3} \times \frac{\delta L}{\delta \dot{\phi}^{l}} F^{e}
\end{aligned}
$$

Using (3), and field eqs.

$$
\frac{d}{d t} \frac{\delta L}{\delta \dot{\phi}^{l}}=\frac{\delta L}{\delta \phi^{e}}
$$

one can show that indeed $\frac{d Q}{d t}=0$.
Other symmetries leave even the lagrangian \mathcal{L} invariant

$$
\begin{aligned}
\longrightarrow S S & =i \int d^{4} x\left[\frac{\delta \mathscr{L}\left(\phi(x), \partial_{\mu} \phi(x)\right)}{\delta \phi^{l(x)}} F^{l}(x) \varepsilon(x)\right. \\
& \left.+\frac{\delta \mathcal{L}\left(\phi(x), \partial_{\mu} \phi(x)\right)}{\delta\left(\partial_{\mu} \phi^{l}(x)\right)} \partial_{\mu}\left(F^{e}(x) \varepsilon(x)\right)\right] \\
L=\text { cost. } & \frac{\delta L}{\delta \phi^{e}} F^{l}+\frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \phi^{e}\right)} \partial_{\mu} F^{l}=0
\end{aligned}
$$

so for arbitrary Σ :

$$
\begin{aligned}
& \delta S[\phi]=i \int d^{4} x \frac{\delta \not \mathscr{L}^{\prime}}{\delta\left(\partial_{\mu} \phi^{e}\right)} F^{l}(x) \partial_{\mu} \Sigma(x) \\
& \longrightarrow \gamma^{\mu}=i \frac{\delta \mathcal{L}}{\delta\left(\partial_{\mu} \phi^{l}\right)} F^{l}
\end{aligned}
$$

$\partial_{\mu} \gamma^{m}=0$ when ϕ^{e} satisfy Euler-Lagrange eqs.
Quantization:
Suppose ϕ^{n} is canonical coordinate
\rightarrow Canonical momentum

$$
\pi_{n}=\frac{\delta \mathscr{L}}{\delta \dot{\phi}^{n}} \text { non-vanishing }
$$

(if $\frac{\delta \mathscr{L}}{\delta \dot{\phi}^{r}}=0$ for some r then δ^{r} is an auxiliary field C^{r})
\rightarrow conserved charge (2) can be expressed as

$$
\begin{aligned}
Q & =i \int d^{3} x \pi_{n}(\vec{x}, t) F^{n}(\vec{x}, t) \\
& =i \int d^{3} x \pi_{n}(\vec{x}, t) F^{n}\left[\phi^{l}(t), \vec{x}\right]
\end{aligned}
$$

Using canonical commutation relations at equal time

$$
\begin{aligned}
& {\left[\phi^{n}(\vec{x}, t), \pi_{m}(\vec{y}, t)\right]_{\mp}=i \delta^{(3)}(\vec{x}-\vec{y}) \delta^{n} m} \\
& {\left[\phi^{n}(\vec{x}, t), \phi^{m}(y, t)\right]_{\mp}=0} \\
& {\left[\pi_{n}(\vec{x}, t), \pi_{m}(\bar{y}, t)\right]_{\mp}=0}
\end{aligned}
$$

one finds (Q is bosonic operator)

$$
\left[Q, \phi^{n}(\stackrel{\rightharpoonup}{x}, t)\right]_{-}=F^{n}(\stackrel{\rightharpoonup}{x}, t)
$$

$\rightarrow Q$ is generator of tres.

$$
\phi^{l}(x) \longmapsto \phi^{l}(x)+i \Sigma F^{l}(x)
$$

also

$$
\left[Q, \pi_{n}(\vec{x}, t)\right]_{-}=\int d^{3} y \pi_{m}(\vec{y}, t) \frac{\delta F^{m}}{\delta \phi^{n}(\vec{x}, t)}
$$

Examples:
i) spacetime translations

$$
\begin{gather*}
\phi^{l}(x) \longmapsto \phi^{l}(x+\varepsilon)=\phi^{l}(x)+\varepsilon^{\mu} \partial_{\mu} \phi^{l}(x) \tag{*}\\
\longrightarrow F_{\mu}^{l}=-i \partial_{\mu} \phi^{l}, \mu=0,1,2,3
\end{gather*}
$$

(4 independent $F^{l}{ }^{\prime} s$)
$\rightarrow 4$ independent conserved currents

$$
\partial_{\mu} T_{v}^{u}=0 \quad, v=0,1,2,3
$$

"energy-momentum tensor"
$\rightarrow 4$ time-independent conserved charges:

$$
P_{v}=\int d_{x}^{3} T_{\nu}^{0}, \quad \frac{d}{d t} P_{\nu}=0
$$

spatial translations leave $L(t)$ invariant

$$
\begin{equation*}
\rightarrow \vec{P}=\int d^{3} x \pi_{n}(\vec{x}, t) \vec{\nabla} \phi^{n}(\vec{x}, t) \tag{4}
\end{equation*}
$$

commutators:

$$
\begin{aligned}
& {\left[\vec{P}, \Phi^{n}(\vec{x}, t)\right]_{-}=-i \vec{\nabla} \Phi^{n}(\bar{x}, t)} \\
& {\left[\vec{P}, \pi_{n}(\vec{x}, t)\right]_{-}=-i \vec{\nabla} \pi_{n}(\vec{x}, t)}
\end{aligned}
$$

\rightarrow for any function $G(\pi, \phi)$, we get

$$
[\vec{P}, G(x)]=-i \vec{\nabla} G(x)
$$

thus we conclude that \vec{P} is generator of space translations time tranelations: $P^{0}:=H$

$$
\rightarrow[H, G(\vec{x}, t)]=i \dot{G}(\stackrel{\rightharpoonup}{x}, t)
$$

We can also derive the form of T^{m}, Note that under (*) :

$$
\begin{aligned}
\delta S[\phi] & =\int d^{4} \times\left(\frac{\delta \mathscr{L}}{\delta \phi^{l}} \Sigma^{\mu} \partial_{\mu} \phi^{l}+\frac{\delta \mathscr{L}}{\delta\left(\partial_{\nu} \phi^{l}\right)} \partial_{\nu}\left[\varepsilon^{\mu} \partial_{\mu} \phi^{l}\right]\right) \\
& =\int d^{4} \times\left(\frac{\partial \mathscr{L}}{\partial x^{\mu}} \varepsilon^{\mu}+\frac{\delta \mathscr{L}}{\delta\left(\partial_{\nu} \phi^{l}\right)} \partial_{\mu} \phi^{l} \partial_{\nu} \varepsilon^{\mu}\right)
\end{aligned}
$$

Integrating by parts,

$$
S S=\int d^{4} x T_{m}^{v} \partial_{\nu} \varepsilon^{m}
$$

where $T_{m}^{v}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{\nu} \phi^{l}\right)} \partial_{\mu} \phi^{l}-\delta_{\mu}^{v} \mathcal{L}$
\longrightarrow for $v=0, \mu \neq 0$ integral matches
with
(4), while for $v=0, n=0$ we get formula for Hamiltonian:

$$
H=P_{0}=\int d^{3} x\left[\sum_{n} \pi_{n} \dot{\phi}^{n}-\mathcal{L}\right]
$$

ii) invariance under linear coordinate-independent tres.

$$
\phi^{n}(x) \longmapsto \phi^{n}(x)+i \Sigma^{a}\left(t_{a}\right)^{n} m \phi^{m}(x)
$$

ta furnish representation of Lie algebra of symmetry group
\rightarrow existence of conserved currents Ina m :

$$
\partial_{m} J_{a}^{m}=0 \rightarrow T_{a}=\int d^{3} \times J_{a}^{0}
$$ is conserved

when $L(f)$ is invariant under (**)

$$
\rightarrow T_{a}=-i \int d^{3} \times \Pi_{n}(\vec{x}, f)\left(t_{a}\right)^{n} m \phi^{m}(\vec{x}, t)
$$

equal time commutation relations give

$$
\begin{aligned}
{\left[T_{a}, \phi^{n}(x)\right]=} & -\left(t_{a}\right)^{n} m \phi^{m}(x) \\
{\left[T_{a}, P_{n}(x)\right]=} & +\left(f_{a}\right)^{m}{ }_{n} P_{m}(x) \\
\rightarrow & {\left[T_{a}, T_{b}\right]_{-}=i } \\
& \quad\left[d ^ { 3 } x \left[-\pi_{m}\left(t_{a}\right)_{n}^{m}\left(t_{b}\right)_{k}^{n} \phi^{k}\right.\right. \\
& \left.+\Pi_{n}\left(t_{b}\right)_{k}^{n}\left(t_{a}\right)_{m}^{k} \phi^{m}\right]
\end{aligned}
$$

thus $\left[t_{a}, t_{b}\right]_{-}=i f_{a b}{ }^{c} t_{c}$ implies

$$
\left[T_{a}, T_{b}\right]_{-}=i f_{a b}^{c} T_{c}
$$

As an illustration, suppose we have two real scalar fields of equal mass

$$
\begin{aligned}
\rightarrow \mathscr{L}= & -\frac{1}{2} \partial_{m} \varphi_{1} \partial^{\mu} \varphi_{1}-\frac{1}{2} m \varphi_{1}^{2} \\
& -\frac{1}{2} \partial_{\mu} \varphi_{2} \partial^{\mu} \varphi_{2}-\frac{1}{2} m \varphi_{2}^{2}-\mu\left(\varphi_{1}^{2}+\varphi_{2}^{2}\right)
\end{aligned}
$$

this is invariant under SO(2):

$$
\begin{aligned}
\delta \varphi_{1} & =-\varepsilon \varphi_{2}, \quad \delta \varphi_{2}=+\varphi_{1} \\
\rightarrow \quad J^{m} & =-\varphi_{1} \partial^{m} \varphi_{2}+\varphi_{2} \partial^{m} \varphi_{1} \\
\gamma_{a}^{0} & =-i \Pi_{n}\left(t_{a}\right)^{n} \varphi^{m}
\end{aligned}
$$

equal time commutators:

$$
\begin{aligned}
& {\left[\gamma_{a}^{0}(\vec{x}, t), \varphi^{n}(\vec{y}, t)\right]=-\delta^{(3)}(\vec{x}-\vec{y})\left(f_{a}\right)^{n} m^{m}(\vec{x}, t)} \\
& {\left[\gamma_{a}^{0}(\vec{x}, t), \pi_{m}(\vec{y}, t)\right]=+\delta^{(3)}(\vec{x}-\vec{y})\left(t_{a}\right)^{n} m_{n} \pi_{n}(\vec{x}, t)}
\end{aligned}
$$

